An Improved Scheme of Frequency-Dependent AVO Inversion Method and Its Application for Tight Gas Reservoirs

Author:

Liu Jiong123ORCID,Ning Jun-rui123,Liu Xi-wu123,Liu Chun-yuan123,Chen Tian-sheng123

Affiliation:

1. National Key Laboratory of Corporation of Shale Oil/Gas Enrichment Mechanism and Effective Development, China

2. Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production Technology, China

3. Sinopec Petroleum Exploration and Production Research Institute, China

Abstract

AVO inversion is a seismic exploration methodology used to predict the earth’s elastic parameters and thus rocks and fluid properties. It is built up on elastic theory and does not consider the seismic dispersion in real strata. Recent experiments and theory of rock physics have shown that in hydrocarbon-bearing rocks, especially in gas-bearing ones, the change of seismic velocity with frequency may be pretty remarkable for fluid flow in pore space. Some scholars proposed methods about seismic dispersion, such as frequency-dependent AVO inversion, to forecast oil and gas reservoirs underground. In this paper, we demonstrate an improved scheme of frequency-dependent AVO inversion, which is based on conventional Smith-Gidlow’s AVO equation, to extract seismic dispersion and predict the hydrocarbon underground. A simple model with gas-bearing reservoir is devised to validate the inversion scheme, and further analysis indicates that our scheme is more accurate and reasonable than the previous scheme. Our new scheme applied to the tight gas reservoirs in Fenggu area of western Sichuan depression of China finds that regions with high dispersion gradients correlate well with regions with prolific gas. Analysis and case studies show that our scheme of frequency-dependent AVO inversion is an efficient approach to predict gas reservoirs underground.

Funder

NSFC and Sinopec Joint Key Project

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3