Fluid Discrimination Based on Frequency-Dependent AVO Inversion with the Elastic Parameter Sensitivity Analysis

Author:

Wang Pu1ORCID,Li Jingye1ORCID,Chen Xiaohong1,Wang Kedong1,Wang Benfeng2ORCID

Affiliation:

1. State Key Laboratory of Petroleum Resources and Prospecting, National Engineering Laboratory for Offshore Oil Exploration, China University of Petroleum-Beijing, Beijing 102249, China

2. Tongji University, State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Institute for Advanced Study, Shanghai 200092, China

Abstract

Fluid discrimination is an extremely important part of seismic data interpretation. It plays an important role in the refined description of hydrocarbon-bearing reservoirs. The conventional AVO inversion based on Zoeppritz’s equation shows potential in lithology prediction and fluid discrimination; however, the dispersion and attenuation induced by pore fluid are not fully considered. The relationship between dispersion terms in different frequency-dependent AVO equations has not yet been discussed. Following the arguments of Chapman, the influence of pore fluid on elastic parameters is analyzed in detail. We find that the dispersion and attenuation of Russell fluid factor, Lamé parameter, and bulk modulus are more pronounced than those of P-wave modulus. The Russell fluid factor is most prominent among them. Based on frequency-dependent AVO inversion, the uniform expression of different dispersion terms of these parameters is derived. Then, incorporating the P-wave difference with the dispersion terms, we obtain new P-wave difference dispersion factors which can identify the gas-bearing reservoir location better compared with the dispersion terms. Field data application also shows that the dispersion term of Russell fluid factor is optimal in identifying fluid. However, the dispersion term of Russell fluid factor could be unsatisfactory, if the value of the weighting parameter associated with dry rock is improper. Then, this parameter is studied to propose a reasonable setting range. The results given by this paper are helpful for the fluid discrimination in hydrocarbon-bearing rocks.

Funder

CAST Innovation Foundation

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3