VELOCITY AND ATTENUATION OF SEISMIC WAVES IN TWO‐PHASE MEDIA: PART I. THEORETICAL FORMULATIONS

Author:

Kuster Guy T.1,Toksöz M. Nafi2

Affiliation:

1. MIT, Cambridge, Massachusetts

2. MIT, Cambridge, Massachusetts 02139

Abstract

The propagation of seismic waves in two‐phase media is treated theoretically to determine the elastic moduli of the composite medium given the properties, concentrations, and shapes of the inclusions and the matrix material. For long wavelengths the problem is formulated in terms of scattering phenomena in an approach similar to that of Ament (1959). The displacement fields, expanded in series, for waves scattered by an “effective” composite medium and individual inclusions are equated. The coefficients of the series expansions of the displacement fields provide a relationship between the elastic moduli of the effective medium and those of the matrix and inclusions. The expressions are derived for both solid and liquid inclusions in a solid matrix as well as for solid suspensions in a fluid matrix. Both spherical and oblate spheroidal inclusions are considered. Some numerical calculations are carried out to demonstrate the effects of fluid inclusions of various shapes on the seismic velocities in rocks. It is found that the concentration, shapes, and properties of the inclusions are important parameters. A concentration of a fraction of one percent of thin (small aspect ratio) inclusions could affect the compressional and shear velocities by more than ten percent. For both sedimentary and igneous rock models, the calculations for “dry” (i.e.,air‐saturated) and water‐saturated states indicate that the compressional velocities change significantly while the shear velocities change much less upon saturation with water.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3