Use of Heat-Shock and Edible Coating to Improve the Postharvest Preservation of Blueberries

Author:

Liu Chunyan123,Ding Jie12ORCID,Huang Peng14,Li Hongying1,Liu Yan1,Zhang Yuwei1,Hu Xinjie1,Deng Shanggui3,Liu Yaowen1,Qin Wen1

Affiliation:

1. College of Food Science, Sichuan Agricultural University, Yaan 625014, China

2. College of Food Science, Sichuan Tourism University, Chengdu 610100, China

3. College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China

4. Department of Quality Management and Inspection and Detection, Yibin University, Yibin 644000, China

Abstract

The quality of blueberry fruit is easily altered after harvest. We investigated the regulatory mechanism of heat-shock (postharvest treatment) and edible coating (preharvest treatment) on the post-harvest physiological quality of blueberry from the perspective of physiological, biochemical and organoleptic characteristics. In our research, the optimal TKL concentration and the appropriate range of heat-shock temperatures were first screened based on actual application results, and then a combination of heat-shock temperature and TKL coating with significant differences in preservation effects was selected to investigate the effects of different heat-shock temperatures and TKL60 composite coating on post-harvest quality and volatile compound concentration of blueberries under refrigerated conditions. Our results showed that TKL with 60 mg/L thymol can retard the development of the degree of membrane lipid peroxidation and effectively reduce the incidence of fruit decay and the severity of blueberries infected with major pathogens at 25 °C. Meanwhile, heat-shock treatments were effective in maintaining the quality of blueberries, with a certain advantage from 45 °C to 65 °C after 8 d of storage at ambient temperature, but these treated groups were slightly inferior to TKL60 groups for fresh-keeping effect. Remarkably, the combination of heat-shock treatment and edible coating application could extend the shelf life of blueberries by 7–14 d compared to the results obtained with coating alone under low temperature storage. Specifically, heat treatment at 45 °C for 60 min after TKL60 coating (HT2) retarded the decrease in the levels of ascorbic acid, total anthocyanin, total acid and soluble solids. Gas chromatography–mass spectrometry hierarchical clustering analysis showed that this treatment also improved the aroma of the fruit, which maintained a certain similarity with that of fresh blueberries after 14 d. Principal component analysis (PCA) of the results of the evaluations carried out using an electronic nose (E-nose) and electronic tongue (E-tongue) showed that blueberries of the HT2 treated group did not show a large placement change of the PC1 distribution area from that of the fresh and blank control group. Accordingly, the combination of coating with heat-shock treatment can effectively improve the post-harvest quality and aroma compound concentration of blueberries, showing good application potential in storage and preservation of fresh fruits such as blueberries.

Funder

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3