Mechanism of Enhancing Pyrazines in Daqu via Inoculating Bacillus licheniformis with Strains Specificity

Author:

Tang QiuxiangORCID,Chen Xiaoru,Huang Jun,Zhang Suyi,Qin Hui,Dong Yi,Wang Chao,Wang Xiaojun,Wu Chongde,Jin Yao,Zhou RongqingORCID

Abstract

Despite the importance of pyrazines in Baijiu flavor, inoculating functional strains to increase the contents of pyrazine in Daqu and how those interact with endogenic communities is not well characterized. The effects of inoculating Bacillus licheniformis with similar metabolic capacity on pyrazine and community structure were assessed in the Daqu complex system and compared with traditional Daqu. The fortification strategy increased the volatile metabolite content of Daqu by 52.40% and the pyrazine content by 655.99%. Meanwhile, results revealed that the pyrazine content in Daqu inoculated isolate J-49 was 2.35–7.41 times higher than isolate J-41. Both isolates have the almost same capability of 2,3-butanediol, a key precursor of pyrazine, in pure cultured systems. Since the membrane fatty acids of isolate J-49 contain unsaturated fatty acids, it enhances the response-ability to withstand complex environmental pressure, resulting in higher pyrazine content. PICRUSt2 suggested that the increase in pyrazine was related to the enzyme expression of nitrogen metabolism significantly increasing, which led to the enrichment of NH4+ and 2,3-butanediol (which increased by 615.89%). These results based on multi-dimensional approaches revealed the effect of functional bacteria enhancement on the attribution of Daqu, laid a methodological foundation regulating the microbial community structure and enhanced the target products by functional strains.

Funder

cooperation of Sichuan University–Luzhou Laojiao Company Limited

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3