Optimization of Fermentation Conditions for 2,3,5-Trimethylpyrazine Produced by Bacillus amyloliquefaciens from Daqu

Author:

Liu Xun1,Yang Weijie1,Gu Hongyi1,Bughio Ayaz Ali1,Liu Jun123ORCID

Affiliation:

1. School of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China

2. Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644000, China

3. Wuliangye Co., Ltd., Yibin 644000, China

Abstract

2,3,5-trimethylpyrazine (TMP), as a volatile heterocyclic nitrogen compound, has a wide range of applications. To explore an efficient and environmentally friendly way to produce TMP, Bacillus strains were isolated from Daqu using traditional separation and purification methods. The fermentation products were detected by gas chromatography–mass spectrometry (GC-MS), and the species relationship of strains was analyzed by morphological and phylogenetic tree construction. Single factors were selected to optimize the fermentation process of TMP production, and a Box–Behnken design was used for response surface testing. The LC-6 strain isolated from Daqu was Bacillus amyloliquefaciens, and its fermentation products contained TMP, with a relatively high value of 0.071 ± 0.011 mg/g, indicating that the LC-6 strain was a potentially valuable TMP-producing bacterium. The results of single-factor testing showed that temperature, bottle capacity, and water addition significantly affected TMP production. Box–Behnken design and response surface analysis revealed that the order of influence on TMP yield was as follows: water addition > temperature > bottle capacity. Response surface optimization results showed that the optimal parameters for wheat medium fermentation were temperature 37 °C, bottle capacity 100 g/250 mL, and water addition 39 mL. Under these fermentation conditions, the average production of TMP was 0.446 ± 0.052 mg/g, which was 0.375 mg/g higher than that obtained before optimization. Compared with the previous period, the production of TMP indeed increased, providing a basis for further research on the solid-state fermentation process of TMP synthesis.

Funder

Natural Science Foundation of Sichuan Province of China

Sichuan Province Scientific Research Foundation for the Returned Overseas Chinese Scholars

Industry–University–Research Collaboration project of Wuliangye Co., Ltd.

Innovation Fund of Postgraduate, Sichuan University of Science & Engineering

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3