Effect of the Application of Ultrasound to Homogenize Milk and the Subsequent Pasteurization by Pulsed Electric Field, High Hydrostatic Pressure, and Microwaves

Author:

Astráin-Redín Leire1ORCID,Skipnes Dagbjørn2ORCID,Cebrián Guillermo1ORCID,Álvarez-Lanzarote Ignacio1ORCID,Rode Tone Mari2

Affiliation:

1. Departamento de Producción Animal y Ciencia de los Alimentos, Tecnología de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón—IA2—(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain

2. NOFIMA Norwegian Institute of Food, Fisheries and Aquaculture Research, 4021 Stavanger, Norway

Abstract

The efficacy of applying ultrasound (US) as a system to homogenize emulsions has been widely demonstrated. However, research has not yet shown whether the effect achieved by homogenizing milk with US is modified by subsequent pasteurization treatments that use new processing technologies such as pulsed electric fields (PEF), microwaves (MW), and high hydrostatic pressure (HPP). The aim of this study was, therefore, to optimize the application of US for milk homogenization and to evaluate the effect of PEF, HPP, and MW pasteurization treatments on the sensorial, rheological, and microbiological properties of milk throughout its shelf life. To homogenize whole milk, a continuous US system (20 kHz, 0.204 kJ/mL, 100%, 40 °C) was used, and different ultrasonic intensities (0.25, 0.5, and 1.0 kJ/mL) were evaluated. The optimal ultrasonic treatment was selected on the basis of fat globule size distribution and pasteurization treatments by MW (5800 W, 1.8 L/min), PEF (120 kJ/kg, 20 kV/cm) and HPP (600 MPa, 2 min, 10 °C) was applied. The ultrasound intensity that achieved the highest reduction in fat globule size (0.22 ± 0.02 µm) and the most homogeneous distribution was 1.0 kJ/mL. Fat globule size was smaller than in commercial milk (82% of volume < 0.5 µm for US milk versus 97% of volume < 1.2 µm for commercial milk). That size was maintained after the application of the different pasteurization treatments, and the resulting milk had better emulsion stability than commercial milk. After 28 days of storage, no differences in viscosity (4.4–4.9 mPa s) were observed. HPP pasteurization had the greatest impact on color, leading to higher yellowness values than commercial milk. Microbial counts did not vary significantly after 28 days of storage, with counts below 102 CFU/mL for samples incubated at 15 °C and at 37 °C. In summary, the homogenization of milk obtained by US was not affected by subsequent pasteurization processes, regardless of the technology applied (MW, PEF, or HPP). Further research is needed to evaluate these procedures’ effect on milk’s nutritional and functional properties.

Funder

the Research Council of Norway

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3