Combined Effect of Ultrasound and Microwave Power in Tangerine Juice Processing: Bioactive Compounds, Amino Acids, Minerals, and Pathogens

Author:

Demirok Nazan TokatlıORCID,Yıkmış SeydiORCID

Abstract

The inhibition of Escherichia coli ATCC 25922 (E. coli), Staphylococcus aureus ATCC6538 (S. aureus), Salmonella Enteritidis ATCC 13076 (S. Enteritidis), and Listeria monocytogenes DSM12464 (L. monocytogenes) is one of the main aims of the food industry. This study was the first in which the use of ultrasound and microwave power were applied to optimize the values of the bioactive components, amino acids, and mineral compositions of tangerine juice and to inhibit Escherichia coli, Staphylococcus aureus, Salmonella Enteritidis, and Listeria monocytogenes. The response surface methodology (RSM) was used to describe the inactivation kinetics, and the effects of ultrasound treatment time (X1: 12–20 min), ultrasound amplitude (X2:60–100%), microwave treatment time (X3: 30–40 s), and microwave power (X4:200–700 W). The optimum parameters applied to a 5-log reduction in E. coli were determined as ultrasound (12 min, 60%) and microwave (34 s, 700 W). The optimum condition ultrasound–microwave treatment was highly effective in tangerine juice, achieving up to 5.27, 5.12, and 7.19 log reductions for S. aureus, S. Enteritidis, and L. monocytogenes, respectively. Ultrasound–microwave treatment increased the total phenolic compounds and total amino acids. While Cu, K, Mg, and Na contents were increased, Fe and Ca contents were lower in the UM-TJ (ultrasound–microwave-treated tangerine juice) sample. In this case, significant differences were detected in the color values of ultrasound–microwave-treated tangerine juice (UM-TJ) (p < 0.05). The results of this study showed that ultrasound–microwave treatment is a potential alternative processing and preservation technique for tangerine juice, resulting in no significant quality depreciation.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3