Abstract
The potential of four dimension reduction methods for near-infrared spectroscopy was investigated, in terms of predicting the protein, fat, and moisture contents in lamb meat. With visible/near-infrared spectroscopy at 400–1050 nm and 900–1700 nm, respectively, calibration models using partial least squares regression (PLSR) or multiple linear regression (MLR) between spectra and quality parameters were established and compared. The MLR prediction models for all three quality parameters based on the wavelengths selected by stepwise regression achieved the best results in the spectral region of 400–1050 nm. As for the spectral region of 900–1700 nm, the PLSR prediction model based on the raw spectra or high-correlation spectra achieved better results. The results of this study indicate that sampling interval shortening and of peak-to-trough jump features are worthy of further study, due to their great potential in explaining the quality parameters.
Funder
Ningxia Hui Autonomous Region of China
Science and Technology Program of Hebei
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献