Combined Effects of Cold and Hot Air Drying on Physicochemical Properties of Semi-Dried Takifugu obscurus Fillets

Author:

Zhu Ye12ORCID,Chen Xiaoting13,Qiao Kun1ORCID,Chen Bei1,Xu Min13,Cai Shuilin1,Shi Wenzheng2,Liu Zhiyu1

Affiliation:

1. Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Fisheries Research Institute of Fujian, Xiamen 361013, China

2. College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China

3. College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China

Abstract

The physicochemical properties of semi-dried Takifugu obscurus fillets in cold air drying (CAD), hot air drying (HAD), and cold and hot air combined drying (CHACD) were analyzed based on pH, water state, lipid oxidation, protein degradation, and microstructure, using a texture analyzer, low-field nuclear magnetic resonance, thiobarbituric acid, frozen sections, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and differential scanning calorimetry. Water binding to the samples was enhanced by all three drying methods, and the immobilized water content of CHACD was between that of HAD and CAD. The pH of the semi-dried fillets was improved by CHACD. When compared to HAD and CAD, CHACD improved the springiness and chewiness of the fillets, especially cold air drying for 90 min (CAD-90), with values of 0.97 and 59.79 g, respectively. The muscle fibers were arranged compactly and clearly in CAD-90, having higher muscle toughness. CHACD reduced the drying time and degree of lipid oxidation compared to HAD and CAD. CAD better preserved protein composition, whereas HAD and CHACD promoted actin production; CHACD had a higher protein denaturation temperature (74.08–74.57 °C). CHACD results in better physicochemical properties than HAD or CAD, including shortened drying time, reduced lipid oxidation, enhanced protein stability, and denser tissue structure. These results provide a theoretical basis for selecting the appropriate drying method for T. obscurus in industrial applications.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3