Rehydration characteristics of dried icefish (Salangidae) with different drying methods by low‐field nuclear magnetic resonance and magnetic resonance imaging

Author:

Zhu Yingying12ORCID,Ouyang Wenqing1,Lu Bing3,Lu Shuilong2,Feng Shengbao2,Lu Jing1

Affiliation:

1. Engineering Research Center of Magnetic Resonance Analysis Technology, Department of Food Nutrition and Test Suzhou Vocational University Suzhou Jiangsu China

2. Qinghai Huzhu TianyouDe Highland Barley Spirit Co., Ltd. Haidong China

3. Suzhou Niumag Analytical Instrument Corporation Suzhou Jiangsu China

Abstract

AbstractIcefish (Salangidae) is a valuable aquatic product that is often dried for preservation. The purpose of this study was to investigate the effect of different drying methods on the rehydration quality of icefish. Low‐field nuclear magnetic resonance (LF‐NMR) was used to compare the rehydration rate, moisture migration and distribution of icefish dried by cold air (8, 10, 12°C) and hot air (40, 50, 60°C) The muscle fibers structure of dried icefish and magnetic resonance imaging (MRI) of icefish after rehydration were examined. The results showed that cold air drying resulted in higher values of these parameters than hot air drying. MRI analysis revealed that cold air dried icefish retained more water after rehydration than hot air dried icefish. The T2 transverse relaxation spectra of rehydrated icefish exhibited three peaks corresponding to bound water, immobilized water and free water. The proportion of immobilized water increased significantly and accounted for more than 92% after rehydration, while the proportion of free water was around 2%–3%. Cold air drying preserved the muscle fiber structure and protein network better than hot air drying, which improved the rehydration quality of icefish. The study provides theoretical and data support for using cold air drying technology in aquatic product processing.Practical applicationsThe focus of this study is to compare the effect of different drying methods on the rehydration rate of icefish. The results indicate that part of the bound water migrated to the immobilized water during the initial stage of rehydration, which increased the content of immobilized water and reduced the binding force of some bound water. The T2 value shifts to the right in all groups, indicating that the binding force between biological macromolecules (such as myofibrillar protein) and icefish water was weakened. Different drying methods have a significant impact on changes in the internal water status of rehydrated icefish samples. Our results suggest that cold air drying is a better method for drying icefish compared to hot air drying, as it improves its rehydration quality. The findings of this study can be useful for food industry personnel who are involved in fish processing, preservation, and nutrition.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

General Chemical Engineering,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3