Affiliation:
1. Innov’COM Laboratory, Higher School of Communication of Tunis, University of Carthage, Technopark Elghazala, Raoued, Ariana 2083, Tunisia
2. Core Curriculum Program, Deanship of General Studies, Qatar University, Doha P.O. Box 2713, Qatar
Abstract
Fish play a major role in the human nutritional system, and farmers need to know the accurate prediction of fish weight in order to optimize the production process and reduce costs. However, existing prediction methods are not efficient. The formulas for calculating fish weight are generally designed for a single species of fish or for species of a similar shape. In this paper, a new hybrid method called SFI-XGBoost is proposed. It combines the VIF (variance inflation factor), PCC (Pearson’s correlation coefficient), and XGBoost methods, and it covers different fish species. By applying GridSearchCV validation, normalization, augmentation, and encoding techniques, the obtained results show that SFI-XGBoost is more efficient than simple XGBoost. The model generated by our approach is more generalized, achieving accurate results with a wide variety of species. Using the r2_score evaluation metric, SFI-XGBoost achieves an accuracy rate of 99.94%.
Subject
Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献