Optimizing Convolutional Neural Networks, XGBoost, and Hybrid CNN-XGBoost for Precise Red Tilapia (Oreochromis niloticus Linn.) Weight Estimation in River Cage Culture with Aerial Imagery

Author:

Taparhudee Wara1ORCID,Jongjaraunsuk Roongparit1,Nimitkul Sukkrit1,Suwannasing Pimlapat2,Mathurossuwan Wisit3

Affiliation:

1. Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand

2. Research Information Division, Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok 10900, Thailand

3. Fishbear Farm, Kanchanaburi 71110, Thailand

Abstract

Accurate feeding management in aquaculture relies on assessing the average weight of aquatic animals during their growth stages. The traditional method involves using a labor-intensive approach and may impact the well-being of fish. The current research focuses on a unique way of estimating red tilapia’s weight in cage culture via a river, which employs unmanned aerial vehicle (UAV) and deep learning techniques. The described approach includes taking pictures by means of a UAV and then applying deep learning and machine learning algorithms to them, such as convolutional neural networks (CNNs), extreme gradient boosting (XGBoost), and a Hybrid CNN-XGBoost model. The results showed that the CNN model achieved its accuracy peak after 60 epochs, showing accuracy, precision, recall, and F1 score values of 0.748 ± 0.019, 0.750 ± 0.019, 0.740 ± 0.014, and 0.740 ± 0.019, respectively. The XGBoost reached its accuracy peak with 45 n_estimators, recording values of approximately 0.560 ± 0.000 for accuracy and 0.550 ± 0.000 for precision, recall, and F1. Regarding the Hybrid CNN-XGBoost model, it demonstrated its prediction accuracy using both 45 epochs and n_estimators. The accuracy value was around 0.760 ± 0.019, precision was 0.762 ± 0.019, recall was 0.754 ± 0.019, and F1 was 0.752 ± 0.019. The Hybrid CNN-XGBoost model demonstrated the highest accuracy compared to using standalone CNN and XGBoost models and could reduce the time required for weight estimation by around 11.81% compared to using the standalone CNN. Although the testing results may be lower than those from previous laboratory studies, this discrepancy is attributed to the real-world testing conditions in aquaculture settings, which involve uncontrollable factors. To enhance accuracy, we recommend increasing the sample size of images and extending the data collection period to cover one year. This approach allows for a comprehensive understanding of the seasonal effects on evaluation outcomes.

Funder

Thailand Science Research and Innovation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3