Synthesis and Characterization of Imidazolium-Based Ionic Liquids and Evaluating Their Performance as Asphaltene Dispersants

Author:

Ghanem AlaaORCID,Alharthy Rima D.,Desouky Saad M.,El-Nagar Raghda A.ORCID

Abstract

With the projected increase in the production of heavy oil due to the energy crisis, asphaltene-related issues are likely to come to the forefront. This leads to operational problems, safety hazards, and oil production deficiencies, resulting in huge economic losses for the petroleum industry. Therefore, in this work, we aimed to inhibit asphaltene precipitation using ionic liquid (IL) compounds. ILs with long alkyl chains can inhibit the precipitation of asphaltene molecules due to the π–π* interactions between them and the formation of hydrogen bonds. A series of imidazolium-based ionic liquids, IL-0, IL-4, IL-10, and IL-16, were synthesized with yield percents of 79, 81, 80, and 83%, respectively. The prepared materials were characterized well using FTIR, 1H-NMR, and Elemental Analysis. The surface tension, interfacial tension (IFT), and different surface parameters were investigated at different temperatures to simulate the reservoir temperature. IL-0, IL-4, IL-10, and IL-16 displayed their γcmc values at 35, 34, 31, and 32 mN/m at 303 °K, respectively. It was found that the prepared ILs are good surfactants with low values of interfacial tension. Quantum structure–activity relationships using Density Functional Theory (DFT) were used to investigate the geometry optimization electronic structures, the energy gap (ΔE), and the reactivity of the cations of the prepared ILs. The synthesized ILs were evaluated as asphaltene dispersants using two different techniques. The viscometric technique showed that the asphaltene onset precipitation was 28.5 vol.%. This percent was postponed to 42.8, 50, 78.5, and 64.3 vol.%, after adding IL-0, IL-4, IL-10, and IL-16, respectively, and the spectroscopic technique confirmed the results.

Funder

Deanship of Scientific Research (DSR), King Abdulaziz University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3