Influence of Temperature and Pressure on Asphaltene Flocculation

Author:

Hirschberg A.1,deJong L.N.J.1,Schipper B.A.1,Meijer J.G.1

Affiliation:

1. Koninklijke/Shell E and P Laboratorium

Abstract

Abstract A thermodynamic liquid model has been developed to describe the behavior of asphalt and asphaltenes in reservoir crudes upon changes in pressure, temperature, or composition. Asphaltene solubility properties used as input to the model may be obtained from titration experiments on tank oil. High-pressure flocculation experiments confirm the potential of the model. The model appears to be well applicable to conditions at which asphaltenes are associated with resins. The model may be used to identify field conditions where asphalt or asphaltene precipitation will occur. Introduction Scope of study. Miscible flooding with enriched gas or CO has the potential of recovering a significantly larger volume of oil more economically than conventional water flooding. One of the problems in gas drives is asphaltene instability, which might result in plugging or wettability reversal. Asphalt or asphaltenes precipitation may also affect production in the course of precipitation may also affect production in the course of reservoir development by natural depletion. The parameters that govern precipitation appear to be composition of the crude, pressure, temperature, and properties of asphaltenes. For a specific project one can properties of asphaltenes. For a specific project one can investigate the flocculation process experimentally. This proposition is usually impractical because it requires a proposition is usually impractical because it requires a large number of experiments at reservoir conditions of pressure and temperature. Hence, there is a need for a pressure and temperature. Hence, there is a need for a theoretical description using only a limited amount of experimental data to predict precipitation. The search for such a model has been hampered by the widely held notion that asphaltene precipitation is not a (fully) reversible process. Re-examination of experimental information indicates that reversibility of asphaltene precipitation should be considered an open question. If reversible, the process can be described with a thermodynamic model. The aim of the present paper is to demonstrate that flocculation of asphalt and asphaltenes in light crudes (formation of a bituminous phase) can be described with a simple molecular thermodynamic model. The key concepts of asphalt, asphaltenes, and resins are defined in the next section. The model proposed is described in the following section, in which we also review previous studies. We then discuss field experiences. Experimental data are presented on the phase behavior of two light crudes: an Iranian crude oil with an n-heptane asphaltene content of 1.9 wt% (of tank oil) and a North Sea crude with a low (0.3 wt%) asphaltene content (see PVT properties in Tables 1 and 2). We first use the proposed model (Appendix A) to determine the solubility properties of asphaltenes in Crude No. 1, from a series of titration experiments on tank oil. Using, these results, we compare the measured and predicted amounts of asphaltenes precipitated on mixing recombined Crude No. 1 with three potential injection gases (Table 3). We discuss the pressure dependence of asphalt precipitation and compare measured and predicted pressure dependence of the amount of asphalt precipitated from a mixture of crude No. 2 and propane. Possible improvements of the model are also discussed. Finally, the model is used to predict field conditions favorable to asphalt and asphaltene precipitation. Asphaltenes, Resins, and Asphalt. Asphaltenes are defined as the n-heptane insoluble fraction of crude oil obtained following the Inst. of Petroleum (IP) Method Test 143. Resins can be defined as the fraction of crude oil not soluble in ethylacetate but soluble in n-heptane, toluene, and benzene at room temperature. Asphalt is used here as a general term to designate the combination of asphaltenes and resins. Asphalt precipitated by propane can be molten. n-heptane asphaltenes are solid and decompose upon heating. Asphaltenes and resins are heterocompounds and form the most polar fraction of crude oil. Recent studies on asphaltene structure show that the basic asphaltene "molecule" (asphaltene sheet ) has a molecular weight of the same order of magnitude as that of resins (5 × 10 to 10 3 ). Depending on "purity" and concentration asphaltenes form aggregates with a molecular weight of the order of magnitude of 10 to 10 (asphaltene particles ). Resins have a strong tendency to associate with particles ). Resins have a strong tendency to associate with asphaltenes. This reduces the aggregation of asphaltenes, which determines to a large extent their solubility in crude oil. The most common model for asphaltene/resin interaction is the colloidal model. Asphaltene micelles (aggregates) are assumed to be kept in solution (stabilized or peptized) by a layer of resins ("onion-skin model"). peptized) by a layer of resins ("onion-skin model"). However, the studies of Yen, Speight, and Briant provide a basis for developing a molecular model for provide a basis for developing a molecular model for asphaltene/resin interaction. SPEJ P. 283

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3