Evaluating nomogram models for predicting survival outcomes in gastric gastrointestinal stromal tumors with SEER database analysis

Author:

Yong Liuliang,Li Lanjun,Wu Jun,Liang Pan,Gao Jianbo

Abstract

AbstractGastrointestinal stromal tumors (GISTs) predominantly develop in the stomach. While nomogram offer tremendous therapeutic promise, there is yet no ideal nomogram comparison customized specifically for handling categorical data and model selection related gastric GISTs. (1) We selected 5463 patients with gastric GISTs from the SEER Research Plus database spanning from 2000 to 2020; (2) We proposed an advanced missing data imputation algorithm specifically designed for categorical variables; (3) We constructed five Cox nomogram models, each employing distinct methods for the selection and modeling of categorical variables, including Cox (Two-Stage), Lasso-Cox, Ridge-Cox, Elastic Net-Cox, and Cox With Lasso; (4) We conducted a comprehensive comparison of both overall survival (OS) and cancer-specific survival (CSS) tasks at six different time points; (5) To ensure robustness, we performed 50 randomized splits for each task, maintaining a 7:3 ratio between the training and test cohorts with no discernible statistical differences. Among the five models, the Cox (Two-Stage) nomogram contains the fewest features. Notably, at Near-term, Mid-term, and Long-term intervals, the Cox (Two-Stage) model attains the highest Area Under the Curve (AUC), top-1 ratio, and top-3 ratio in both OS and CSS tasks. For the prediction of survival in patients with gastric GISTs, the Cox (Two-Stage) nomogram stands as a simple, stable, and accurate predictive model with substantial promise for clinical application. To enhance the clinical utility and accessibility of our findings, we have deployed the nomogram model online, allowing healthcare professionals and researchers worldwide to access and utilize this predictive tool.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3