Arsenic(III) and Arsenic(V) Removal from Water Sources by Molecularly Imprinted Polymers (MIPs): A Mini Review of Recent Developments

Author:

Tolkou Athanasia K.ORCID,Kyzas George Z.ORCID,Katsoyiannis Ioannis A.

Abstract

The present review article summarizes the recent findings reported in the literature with regard to the use of molecularly imprinted polymers for the removal of arsenic from water and wastewater. MIPs are polymers in which a template is employed in order to enable the formation of recognition sites during the covalent assembly of the bulk phase, via a polymerization or polycondensation process. The efficiency of both arsenic species and the mechanism of removal are highlighted. The results have shown that under certain conditions, MIPs demonstrated arsenic sorption capacities of up to 130 mg/g for As(V) and 151 mg/g for As(III), while the regeneration ability was found to reach up to more than 20 cycles. The overall results showed that further development of MIPs could result in the formation of promising adsorbents for arsenic removal from waters. The use of MIPs for the removal not only of arsenic but also other inorganic contaminants is considered a very important topic, with great potential in terms of future applications in water treatment. The main advantage of these materials is that they are very selective toward the contaminant of interest. This enhanced selectivity is attributed to the incorporation of specific templates, which can then adsorb the contaminant of interest almost exclusively. Therefore, the main problem in adsorption processes is the competition for adsorption sites by other water components, for example, phosphates, nitrates, carbonates, and sulfates, which can be circumvented by the use of MI-type adsorbents.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3