Arsenic Contamination in Groundwater and Potential Health Risk in Western Lampang Basin, Northern Thailand

Author:

Santha Nipada,Sangkajan Saowani,Saenton SchradhORCID

Abstract

This research aimed to investigate the spatial distribution of arsenic concentrations in shallow and deep groundwaters which were used as sources for drinking and domestic and agricultural uses. A geochemical modeling software PHREEQC was used to simulate equilibrium geochemical reactions of complex water–rock interactions to identify arsenic speciation and mineral saturation indices based on groundwater quality and hydrogeochemical conditions. In addition, the potential health risk from arsenic-contaminated groundwater consumption was assessed based on the method developed by the U.S. Environmental Protection Agency. The study area is located at the western part of the Lampang Basin, an intermontane aquifer, Northern Thailand. The area is flat and situated in a floodplain in the Cenozoic basin. Most shallow groundwater (≤10 m depth) samples from dug wells were of Ca-Na-HCO3 and Ca-HCO3 types, whereas deep groundwater from Quaternary terrace deposits (30–150 m depth) samples were of Na-HCO3 and Ca-Na-HCO3 types. High arsenic concentrations were found in the central part of the study area (Shallow groundwater: <2.8–35 mg/L with a mean of 10.7 mg/L; Deep groundwater: <2.8–480 mg/L with a mean of 51.0 mg/L). According to geochemical modeling study, deep groundwater contained toxic As(III), as the dominant species more than shallow groundwater. Arsenic in groundwater of the Lampang Basin may have been derived from leaching of rocks and could have been the primary source of the subsurface arsenic in the study area. Secondary source of arsenic, which is more significant, could be derived from the leaching of sorbed arsenic in aquifer from co-precipitated Fe-oxyhydroxides in sediments. Quantitative risk assessment showed that the average carcinogenic risk values were as high as 2.78 × 10−3 and 7.65 × 10−3 for adult and child, respectively, which were higher than the acceptable level (1 × 10−4). The adverse health impact should be notified or warned with the use of this arsenic-contaminated groundwater without pre-treatment.

Funder

Chiang Mai University

Thailand Science Research and Innovation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference43 articles.

1. Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview

2. Arsenic geochemistry of groundwater in Southeast Asia

3. Arsenic Contamination of Groundwater: Mechanism, Analysis, and Remediation,2008

4. Arsenic Pollution: A Global Synthesis;Ravenscroft,2011

5. Notification of the Ministry of Industry on the Groundwater Chemical Constituent Standards and Regulations;R. Gov. Gaz.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3