Silver-graphene oxide nanocomposite doping chitosan/PVA membrane for arsenic (III) elimination from aqueous solution

Author:

Abd-Elghany Amr AORCID,Ramadan Marwa A,El-Wakeel Shaimaa T,AlOmari Ahmad Khaleel,Mohamad Ebtesam AORCID

Abstract

Abstract Heavy metals and pathogens from contaminated water sources may undoubtedly be removed by creating an efficient bio-adsorbent based on functional spots. Thus, the goal of this work was to produce chitosan (Ch)-polyvinyl alcohol (PVA) biofilm decorated with graphene oxide (GO) sheets doped with silver nanoparticles (AgNPs). The nanostructure of prepared GO/Ag nanosheets is examined by transmission electron microscope (TEM). The fabricated film (GO/Ag Ch-PVA) is compared by the control films (Ch, PVA and Ch-PVA). Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and tensile strength are used to study the films’ structure. Also, the antimicrobial activity was assessed for the films. After doping the polymer matrix with GO/Ag, it was discovered that the tensile strength increased to about 46.18 MPa. Moreover, adsorption experiment for arsenic As (III) ions is explored by the prepared film at different operating conditions. The obtained results validated the enhanced adsorption ability of the GO/Ag Ch-PVA film towards As (III) with the highest adsorption capacity of 54.3 mg g−1 obtained from the isotherm model of Langmuir. Moreover, kinetic mathematical models for the adsorption effectiveness of GO/Ag Ch-PVA film are assessed. The results gathered demonstrated that GO/Ag Ch-PVA film is a potentially useful material for eliminating As (III) and microbial strains from essential water resources.

Funder

Prince Sattam bin Abdulaziz University

Publisher

IOP Publishing

Reference86 articles.

1. Arsenic: It’s toxicity and impact on human health;Prakash;International Journal of Biological Innovations, IJBI,2021

2. Arsenic as an environmental and human health antagonist: A review of its toxicity and disease initiation;Fatoki;Journal of Hazardous Materials Advances,2022

3. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management;Rahaman;Environ. Pollut.,2021

4. Arsenic treatment technologies for soil, waste, and water;Ellis,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3