Machine-Learning-Based Imputation Method for Filling Missing Values in Ground Meteorological Observation Data
Author:
Affiliation:
1. School of Computer and Communication, LanZhou University of Technology, LanZhou 730050, China
2. National Cryosphere Desert Date Center, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Abstract
Funder
National Key R&D Program of China
School of Computer and Communication, Lanzhou University of Technology
Light of West China Program of Chinese Academy of Sciences
Publisher
MDPI AG
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Link
https://www.mdpi.com/1999-4893/16/9/422/pdf
Reference46 articles.
1. Big Data Analytics in Weather Forecasting: A Systematic Review;Fathi;Arch. Comput. Methods Eng.,2021
2. A station-data-based model residual machine learning method for fine-grained meteorological grid prediction;Zhou;Appl. Math. Mech.,2022
3. Performance of CCCma and GFDL climate models using remote sensing and surface data for the state of Rio de Janeiro-Brazil;Magistrali;Remote Sens. Appl. Soc. Environ.,2021
4. The Applicability of Big Data in Climate Change Research: The Importance of System of Systems Thinking;Abonyi;Front. Environ. Sci.,2021
5. Machine learning-assisted mapping of city-scale air temperature: Using sparse meteorological data for urban climate modeling and adaptation;Ding;Build. Environ.,2023
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. DAT-Net: Filling of missing temperature values of meteorological stations by data augmentation attention neural network;Journal of Physics: Conference Series;2024-08-01
2. A Comparative Study on Imputation Techniques: Introducing a Transformer Model for Robust and Efficient Handling of Missing EEG Amplitude Data;Bioengineering;2024-07-23
3. Deep learning tool: reconstruction of long missing climate data based on spatio-temporal multilayer perceptron;Theoretical and Applied Climatology;2024-04-27
4. Forecasting a Journal Impact Factor Under Missing Values Based on Machine Learning;IEEE Access;2024
5. Grape Yield Prediction Models: Approaching Different Machine Learning Algorithms;Horticulturae;2023-11-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3