DAT-Net: Filling of missing temperature values of meteorological stations by data augmentation attention neural network

Author:

Guo Xinshuai,Hou Tianrui,Wu Li

Abstract

Abstract For a long time, filling in the missing temperature data from meteorological stations has been crucial for researchers in analyzing climate variation cases. In previous studies, people have attempted to solve this problem by using interpolation and deep learning methods. Through extensive case studies, it is observed that the data utilization rate of convolutional neural networks based on PConv is low at a high missing rate, which will result in the poor filling performance of each model at a high missing rate. To solve these problems, a Data Augmentation Attention Neural Network (DAT-Net) is presented. DAT Net uses encoder and decoder structures, which include a data augmentation training mechanism (DAM) to enhance model training. In addition, a time encoder (TED) has been developed to assist the model in learning the temporal dependencies of the data. To evaluate DAT-Net, 75% and 85% of experiments were performed, while comparisons were made with Linear, NLinear, DLinear, PatchTST, and GSTA-Net. The results showed that when the missing rate was 75%, DAT-Net decreased by 55.22%, 55.05%, 55.18%, 28.73%, and 12.35% on MAE and 54.08%, 53.88%, 54.08%, 35.48% and, 14.51% on RMSE, R 2 increased by 3.80%, 3,75%, 3.68%, 0.55%, and 0.27%, respectively.

Publisher

IOP Publishing

Reference33 articles.

1. Analysis and estimation of the effects of missing values on the calculation of monthly temperature indices;Massetti;Theoretical and applied climatology,2014

2. Subseasonal climate prediction in the western US using Bayesian spatial models;Srinivasan,2021

3. Forest production efficiency increases with growth temperature;Collalti;Nature Communications,2020

4. Best practices for estimating near-surface air temperature lapse rates;Lute;International Journal of Climatology,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3