Bio-Organic Fertilizer Combined with Different Amendments Improves Nutrient Enhancement and Salt Leaching in Saline Soil: A Soil Column Experiment

Author:

Xiao MengORCID,Liu Guangming,Jiang Shengguo,Guan Xuewei,Chen Jinlin,Yao RongjiangORCID,Wang Xiuping

Abstract

Salt-affected soils frequently experience leaching and desalination issues, which severely restrict plant growth and water uptake. Hence, in this experiment, four treatments including CG (no amendments addition); OF (organic fertilizer addition); OH (organic fertilizer and Hekang amendment addition); and OB (organic fertilizer and fulvic acid addition) were designed to examine the effect of organic amendment on soil chemical properties, water and salt transport, and soil desalination laws of coastal saline soil. The results showed that the addition of organic amendments significantly reduced soil pH (8.47–8.52) and salt content (2.06–2.34 g kg−1), while increasing soil organic matter content, available phosphorus, and available potassium. OH treatment has a higher available phosphorus content than other treatments. OH and OB treatments elevated the soil desalination ratio (32.95% and 32.12%, respectively) by raising the leaching volume and leaching rate. Organic amendments significantly promoted Na+ (4.5–32%) and SO42− (12–27%) leaching compared to CG. Organic treatments, particularly OB treatment, not only increased the content of soil organic matter and available nutrients but also promoted salt ion leaching, improved soil permeability and increased soil desalination and water leaching rates. Our results may provide a theoretical basis for revealing the desalination law of coastal saline soil.

Funder

Natural Science Foundation of China—Shandong Joint Key Project

National Key Research and Development Program of China

Key Research and Development Program of Jiangsu Coast Development Group Co. Ltd.

Science and Technology Project of Xinjiang Production and Construction Corps

Priority Academic Program Development of Jiangsu Higher Education

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3