Biochar and fulvic acid amendments mitigate negative effects of coastal saline soil and improve crop yields in a three year field trial

Author:

Sun Yun-peng,Yang Jing-song,Yao Rong-jiang,Chen Xiao-bing,Wang Xiang-ping

Abstract

AbstractChina with large area of land planted with crops are suffering secondary salinization in coastal area for the lack of fresh water and saltwater intrusion to the groundwater. The purpose of this study was to investigate the effects of biochar (BC) and fulvic acid (FA) on the amelioration of coastal saline soil and their impact on crop yields under maize-barley rotation system. A three year field experiment was conducted in a saline soil on a farm in coastal area of east Jiangsu Province, China. A maize-barley rotation system had been carried out for ten years with local conventional management before the experiment. The saline soil was amended with BC at rates of 0, 7.5 t ha−1 (BC1), 15 t ha−1 (BC2) and 30 t ha−1 (BC3) alone or combined with fulvic acid (1.5 t ha−1) compared with control. Fertilizers were applied under normal planting strategies. The BC was added only once during the four growing seasons, and the FA was applied before each sowing. Soil salinity changed significantly during the three year field experiment. This was mainly due to the great quantity of rain during the period of maize cultivation. Although Na+, Cl and SO42− in BC and /or FA treatments significantly decreased, the pH value increased up to 9.0 as the CO32− + HCO3content increased. Total organic carbon (TOC) and phosphorus (TP) responded positively to biochar addition rate. BC applied with appropriate rate at 15 t ha−1 (BC2) in combination with FA showed optimal effects on soil salinity amelioration, soil physics properties regulation, soil nutrition improvement and crop yields increase. The TOC and TP was 5.2 g kg−1 and 507 mg kg−1 in BC2 + FA treatment, which were lower than BC3 and BC3 + FA treatments. However, the highest total grain yield was obtained in the BC2 + FA treatment, and the total yield was increased by 62.9% over the CK. This study emphasizes that using combined organic amendment of BC with FA for profitable and sustainable use of salt-affected soils would be practicable.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3