Monitoring Mining Surface Subsidence with Multi-Temporal Three-Dimensional Unmanned Aerial Vehicle Point Cloud

Author:

Liu Xiaoyu,Zhu WuORCID,Lian XugangORCID,Xu Xuanyu

Abstract

Long-term and high-intensity coal mining has led to the increasingly serious surface subsidence and environmental problems. Surface subsidence monitoring plays an important role in protecting the ecological environment of the mining area and the sustainable development of modern coal mines. The development of surveying technology has promoted the acquisition of high-resolution terrain data. The combination of an unmanned aerial vehicle (UAV) point cloud and the structure from motion (SfM) method has shown the potential of collecting multi-temporal high-resolution terrain data in complex or inaccessible environments. The difference of the DEM (DoD) is the main method to obtain the surface subsidence in mining areas. However, the obtained digital elevation model (DEM) needs to interpolate the point cloud into the grid, and this process may introduce errors in complex natural topographic environments. Therefore, a complete three-dimensional change analysis is required to quantify the surface change in complex natural terrain. In this study, we propose a quantitative analysis method of ground subsidence based on three-dimensional point cloud. Firstly, the Monte Carlo simulation statistical analysis was adopted to indirectly evaluate the performance of direct georeferencing photogrammetric products. After that, the operation of co-registration was carried out to register the multi-temporal UAV dense matching point cloud. Finally, the model-to-model cloud comparison (M3C2) algorithm was used to quantify the surface change and reveal the spatio-temporal characteristics of surface subsidence. In order to evaluate the proposed method, four periods of multi-temporal UAV photogrammetric data and a period of airborne LiDAR point cloud data were collected in the Yangquan mining area, China, from 2020 to 2022. The 3D precision map of a sparse point cloud generated by Monte Carlo simulation shows that the average precision in X, Y and Z directions is 44.80 mm, 45.22 and 63.60 mm, respectively. The standard deviation range of the M3C2 distance calculated by multi-temporal data in the stable area is 0.13–0.19, indicating the consistency of multi-temporal photogrammetric data of UAV. Compared with DoD, the dynamic moving basin obtained by the M3C2 algorithm based on the 3D point cloud obtained more real surface deformation distribution. This method has high potential in monitoring terrain change in remote areas, and can provide a reference for monitoring similar objects such as landslides.

Funder

Natural Science Foundation of China

the National Key R&D Program of China

Fundamental Research Funds for the Central Universities, CHD

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3