Enhanced Point Cloud Slicing Method for Volume Calculation of Large Irregular Bodies: Validation in Open-Pit Mining

Author:

Meng Xiaoliang12,Wang Tianyi1,Cheng Dayu34,Su Wensong3,Yao Peng5,Ma Xiaoli6,He Meizhen6

Affiliation:

1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430072, China

2. Hubei Luojia Laboratory, Wuhan 430072, China

3. School of Mining and Geomatics Engineering, Hebei University of Engineering, Handan 056038, China

4. Research Center of Hebei Province Ecological Civilization and Social Governance, Hebei University of Engineering, Handan 056038, China

5. Guangxi Taiwei Information Technology Co., Ltd., Guilin 541000, China

6. Lands and Resource Department of Guangdong Province, Surveying and Mapping Institute, Guangzhou 510500, China

Abstract

The calculation of volumes for irregular bodies holds significant relevance across various production processes. This spans tasks such as evaluating the growth status of crops and fruits, conducting morphological analyses of spatial objects based on volume parameters, and estimating quantities for earthwork and excavation. While methods like drainage, surface reconstruction, and triangulation suffice for smaller irregular bodies, larger ones introduce heightened complexity. Technological advancements, such as UAV photogrammetry and LiDAR, have introduced efficient point cloud data acquisition methods, bolstering precision and efficiency in calculating volumes for substantial irregular bodies. Notably, open-pit mines, characterized by their dynamic surface alterations, exemplify the challenges posed by large irregular bodies. Ensuring accurate excavation quantity calculations in such mines is pivotal, impacting operational considerations, acceptance, as well as production cost management and project oversight. Thus, this study employs UAV-acquired point cloud data from open-pit mines as a case study. In practice, calculating volumes for substantial irregular bodies often relies on the point cloud slicing method. However, this approach grapples with distinguishing multi-contour boundaries, leading to inaccuracies. To surmount this hurdle, this paper introduces an enhanced point cloud slicing method. The methodology involves segmenting point cloud data at fixed intervals, followed by the segmentation of slice contours using the Euclidean clustering method. Subsequently, the concave hull algorithm extracts the contour polygons of each slice. The final volume calculation involves multiplying the area of each polygon by the spacing and aggregating these products. To validate the efficacy of our approach, we employ model-derived volumes as benchmarks, comparing errors arising from both the traditional slicing method and our proposed technique. Experimental outcomes underscore the superiority of our point cloud volume calculation method, manifesting in an average relative error of 1.17%, outperforming the conventional point cloud slicing method in terms of accuracy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3