Abstract
This paper aims to develop an efficient pattern recognition method for engine fault end-to-end detection based on the echo state network (ESN) and multi-verse optimizer (MVO). Bispectrum is employed to transform the one-dimensional time-dependent vibration signal into a two-dimensional matrix with more impact features. A sparse input weight-generating algorithm is designed for the ESN. Furthermore, a deep ESN model is built by fusing fixed convolution kernels and an autoencoder (AE). A novel traveling distance rate (TDR) and collapse mechanism are studied to optimize the local search of the MVO and speed it up. The improved MVO is employed to optimize the hyper-parameters of the deep ESN for the two-dimensional matrix recognition. The experiment result shows that the proposed method can obtain a recognition rate of 93.10% in complex engine faults. Compared with traditional deep belief networks (DBNs), convolutional neural networks (CNNs), the long short-term memory (LSTM) network, and the gated recurrent unit (GRU), this novel method displays superior performance and could benefit the fault end-to-end detection of rotating machinery.
Funder
National Natural Science Foundation of China Joint Funding Project
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献