Radial basis function neural network based comparison of dimensionality reduction techniques for effective bearing diagnostics

Author:

GS Vijay1,Pai Srinivasa P2,Sriram NS3,Rao Raj BKN4

Affiliation:

1. Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal, India

2. Department of Mechanical Engineering, NMAM Institute of Technology, Karkala, India

3. Department of Mechanical Engineering, Vidya Vikas Institute of Engineering and Technology, Mysore, India

4. COMADEM International, Birmingham, UK

Abstract

This article uses the cluster dependent weighted fuzzy C-means based radial basis function neural network for comparing the different dimensionality reduction techniques for the fault diagnosis in the rolling element bearing. The vibration signals from normal bearing, bearing with defect on the inner race, and bearing with defect on the outer race were acquired under one radial load and two shaft speeds. These signals were subjected to the wavelet transform based denoising from which several time and frequency domain features were extracted. Dimensionality reduction techniques, namely, principal component analysis, Fisher’s criterion, and separation index, have been used to select the sensitive features. The selected features were used to train and test the radial basis function neural network, where the centers of the radial basis function units have been optimized by the cluster dependent weighted fuzzy C-means and the widths of the radial basis function units have been fixed by trial and error. Finally, a comparison of the dimensionality reduction techniques based on the radial basis function neural network performance is presented.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3