CT scan pancreatic cancer segmentation and classification using deep learning and the tunicate swarm algorithm

Author:

Gandikota Hari PrasadORCID,S. Abirami,M. Sunil Kumar

Abstract

Pancreatic cancer (PC) is a very lethal disease with a low survival rate, making timely and accurate diagnoses critical for successful treatment. PC classification in computed tomography (CT) scans is a vital task that aims to accurately discriminate between tumorous and non-tumorous pancreatic tissues. CT images provide detailed cross-sectional images of the pancreas, which allows oncologists and radiologists to analyse the characteristics and morphology of the tissue. Machine learning (ML) approaches, together with deep learning (DL) algorithms, are commonly explored to improve and automate the performance of PC classification in CT scans. DL algorithms, particularly convolutional neural networks (CNNs), are broadly utilized for medical image analysis tasks, involving segmentation and classification. This study explores the design of a tunicate swarm algorithm with deep learning-based pancreatic cancer segmentation and classification (TSADL-PCSC) technique on CT scans. The purpose of the TSADL-PCSC technique is to design an effectual and accurate model to improve the diagnostic performance of PC. To accomplish this, the TSADL-PCSC technique employs a W-Net segmentation approach to define the affected region on the CT scans. In addition, the TSADL-PCSC technique utilizes the GhostNet feature extractor to create a group of feature vectors. For PC classification, the deep echo state network (DESN) model is applied in this study. Finally, the hyperparameter tuning of the DESN approach occurs utilizing the TSA which assists in attaining improved classification performance. The experimental outcome of the TSADL-PCSC method was tested on a benchmark CT scan database. The obtained outcomes highlighted the significance of the TSADL-PCSC technique over other approaches to PC classification.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference24 articles.

1. Causality-Driven Graph Neural Network for Early Diagnosis of Pancreatic Cancer in Non-Contrast Computerized Tomography;X Li;IEEE Transactions on Medical Imaging,2023

2. Detection and Identification of Pancreatic Cancer Using Probabilistic Neural Network;R. Na;Smart Intelligent Computing and Communication Technology,2021

3. Detection and diagnosis of pancreatic tumor using deep learning-based hierarchical convolutional neural network on the internet of medical things platform;W Xuan;Future Generation Computer Systems,2020

4. Abbas SK, Obied RS. Novel Computer Aided Diagnostic System Using Synergic Deep Learning Technique for Early Detection of Pancreatic Cancer. Webology 18. Special Issue on Information Retrieval and Web Search. 2021 Sep:367–79.

5. Automatic segmentation of pancreatic tumors using deep learning on a video image of contrast-enhanced endoscopic ultrasound;Y Iwasa;Journal of clinical medicine,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3