The Development of a Sorghum Bran-Based Biorefining Process to Convert Sorghum Bran into Value Added Products

Author:

Makanjuola OyenikeORCID,Greetham Darren,Zou Xiaoyan,Du ChenyuORCID

Abstract

Sorghum bran, a starch rich food processing waste, was investigated for the production of glucoamylase in submerged fungal fermentation using Aspergillus awamori. The fermentation parameters, such as cultivation time, substrate concentration, pH, temperature, nitrogen source, mineral source and the medium loading ratio were investigated. The glucoamylase activity was improved from 1.90 U/mL in an initial test, to 19.3 U/mL at 10% (w/v) substrate concentration, pH 6.0, medium loading ratio of 200 mL in 500 mL shaking flask, with the addition of 2.5 g/L yeast extract and essential minerals. Fermentation using 2 L bioreactors under the optimum conditions resulted in a glucoamylase activity of 23.5 U/mL at 72 h, while further increase in sorghum bran concentration to 12.5% (w/v) gave an improved gluco-amylase activity of 37.6 U/mL at 115 h. The crude glucoamylase solution was used for the enzymatic hydrolysis of the sorghum bran. A sorghum bran hydrolysis carried out at 200 rpm, 55 °C for 48 h at a substrate loading ratio of 80 g/L resulted in 11.7 g/L glucose, similar to the results obtained using commercial glucoamylase. Large-scale sorghum bran hydrolysis in 2 L bioreactors using crude glucoamylase solution resulted in a glucose concentration of 38.7 g/L from 200 g/L sorghum bran, corresponding to 94.1% of the theoretical hydrolysis yield.

Funder

University of Huddersfield

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science

Reference42 articles.

1. Chapter title?;Fuller,2014

2. Sorghum/harvest, storage and transport;Beta,2004

3. Sorghum/utilization;Waniska,2004

4. Dry-milling of sorghum for ogi manufacture

5. A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3