Joint Reduction of NiO/WO3 Pair and NiWO4 by Mg + C Combined Reducer at High Heating Rates

Author:

Zakaryan Marieta,Nazaretyan Khachik,Aydinyan Sofiya,Kharatyan Suren

Abstract

Functional features of Ni-W composite materials combined with successful performance enabled a breakthrough in their broad application. To disclose the formation pathway of Ni-W composite materials at extreme conditions of combustion synthesis in the NiO-WO3-Mg-C and NiWO4-Mg-C systems for the optimization of the synthesis procedure, the process was modeled under programmed linear heating conditions by thermal analysis methods. The reduction kinetics of tungsten and nickel oxides mixture and nickel tungstate by Mg + C combined reducer at non-isothermal conditions was studied at high heating rates (100–1200 °C min−1) by high-speed temperature scanner techniques. It was shown that when moving from low heating to high heating rates, the mechanism of both the magnesiothermic and magnesio-carbothermic reductions of the initial mixtures changes; that is, the transition from a solid-solid scheme to a solid-liquid scheme is observed. The strong influence of the heating rate on the reduction degree and kinetic parameters of the systems under study was affirmed. The simultaneous utilization of magnesium and carbon as reducers allowed the lowering of the starting and maximum temperatures of reduction processes, as evidenced by the synergetic effect at the utilization of a combined reducer. The effective values of activation energy (Ea) for the reactions proceeding in the mixtures NiO + WO3 + 4Mg, NiO + WO3 + 2.5Mg + 1.5C, NiWO4 + 4Mg and NiWO4 + 2Mg + 2C were estimated by Kissinger isoconversional method and were 146 ± 10, 141 ± 10, 216 ± 15 and 148 ± 15 kJ mol−1, respectively.

Funder

Committee of Science Ministry of Education, Science, Culture and Sports of the Republic of Armenia

Estonian Research Council

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3