Novel Pathway for the Combustion Synthesis and Consolidation of Boron Carbide

Author:

Zakaryan Marieta K.ORCID,Zurnachyan Alina R.,Amirkhanyan Narine H.,Kirakosyan Hasmik V.,Antonov MaksimORCID,Rodriguez Miguel A.ORCID,Aydinyan Sofiya V.

Abstract

A novel pathway for the magnesiothermic reduction of boron oxide and magnesium dodecaboride (MgB12) in the presence of carbon by a self-propagating high-temperature synthesis method was proposed that was aimed at the direct preparation of boron carbide nanopowder. The combined utilization of two boron sources, boron oxide and MgB12, allowed tailoring the overall caloric effect of the process, increasing the yield of the target product and lessening the laborious leaching process. In addition, it is an alternative way to utilize magnesium borides, which are inevitable side products at boron production. Multivariate thermodynamic calculations performed in the B2O3-MgB12-Mg-C system allowed estimating equilibrium compositions of the products and deducing the optimum composition of the initial mixture for obtaining B4C. For the latter, the adiabatic temperature (Tad) is 2100 °C, which is theoretically enough for the implementation of the self-propagating reaction. The combustion reaction was shown to be extremely sensitive to the initial mixture composition, external pressure, as well as sample diameter (heat losses). It proceeds in self-oscillatory mode and leads to the product of a layered macrostructure. The combustion product was then consolidated by the spark plasma sintering technique at different conditions. Vickers microhardness was measured, and the wear erosion behavior was examined. The variation in lattice parameters of boron carbide reflected the influence of synthesis, sintering and erosion conditions on the ordering/disordering of the boron carbide structure.

Funder

Committee of Science Ministry of Education, Science, Culture, and Sports of the Republic of Armenia

Estonian Research Council

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3