Moisture Estimation in Cabinet Dryers with Thin-Layer Relationships Using a Genetic Algorithm and Neural Network

Author:

Maleki ,Ghazvini ,Ahmadi ,Maddah ,Shamshirband

Abstract

Nowadays, industrial dryers are used instead of traditional methods for drying. When designing dryers suitable for controlling the process of drying and reaching a high-quality product, it is necessary to predict the gradual moisture loss during drying. Few studies have been conducted to compare thin-layer models and artificial neural network models on the kinetics of pistachio drying in a cabinet dryer. For this purpose, ten mathematical-experimental models with a neural network model based on the kinetic data of pistachio drying were studied. The data obtained was from a cabinet dryer evaluated at four temperatures of inlet air and different air velocities. The pistachio seeds were placed in a thin layer on an aluminum sheet on a drying tray and weighed by a scale attached to the computer at different times. In the neural network, data was divided into three parts: Educational (60%), validation (20%) and testing (20%). Finally, the best mathematical-experimental model using a genetic algorithm and the best neural network structure for predicting instantaneous moisture were selected based on the least squared error and the highest correlation coefficient.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3