Sage Revised Reiterative Even Zernike Polynomials Neural Network Control with Modified Fish School Search Applied in SSCCRIM Impelled System

Author:

Lin Chih-HongORCID

Abstract

In light of fine learning ability in the existing uncertainties, a sage revised reiterative even Zernike polynomials neural network (SRREZPNN) control with modified fish school search (MFSS) method is proposed to control the six-phase squirrel cage copper rotor induction motor (SSCCRIM) impelled continuously variable transmission assembled system for obtaining the brilliant control performance. This control construction can carry out the SRREZPNN control with the cozy learning law, and the indemnified control with an assessed law. In accordance with the Lyapunov stability theorem, the cozy learning law in the revised reiterative even Zernike polynomials neural network (RREZPNN) control can be extracted, and the assessed law of the indemnified control can be elicited. Besides, the MFSS can find two optimal values to adjust two learning rates with raising convergence. In comparison, experimental results are compared to some control systems and are expressed to confirm that the proposed control system can realize fine control performance.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3