A Rectified Reiterative Sieved-Pollaczek Polynomials Neural Network Backstepping Control with Improved Fish School Search for Motor Drive System

Author:

Lin Chih-HongORCID

Abstract

As the six-phase squirrel cage copper rotor induction motor has some nonlinear characteristics, such as nonlinear friction, nonsymmetric torque, wind stray torque, external load torque, and time-varying uncertainties, better control performances cannot be achieved by utilizing general linear controllers. The snug backstepping control with sliding switching function for controlling the motion of a six-phase squirrel cage copper rotor induction motor drive system is proposed to reduce nonlinear uncertainty effects. However, the previously proposed control results in high chattering on nonlinear system effects and overtorque on matched uncertainties. So as to reduce the immense chattering situation, we then put forward the rectified reiterative sieved-Pollaczek polynomials neural network backstepping control with an improved fish school search method to estimate the external bundled torque uncertainties and to recoup the smallest reorganized error of the evaluated rule. In the light of Lyapunov stability, the online parametric training method of the rectified reiterative sieved-Pollaczek polynomials neural network can be derived by utilizing an adaptive rule. Moreover, to improve convergence and obtain beneficial learning manifestation, the improved fish school search algorithm is made use of to readjust two fickle learning rates of the weights in the rectified reiterative sieved-Pollaczek polynomials neural network. Lastly, the effectuality of the proposed control system is validated by examination results.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3