Abstract
This paper presents an altered grey wolf optimization, the Taguchi method, and finite element analysis (FEA) with two-phase multi-objective optimization for the design of a six-phase copper squirrel cage rotor induction motor (SCSCRIM). The multi-objective optimization design with high-performance property aims to achieve lower starting current, lower losses, lower input power, higher efficiency, higher output torque, and higher power factor. The multi-objective optimization design with high-performance property using the altered grey wolf optimization, the Taguchi method, and FEA in the first-phase program is used for minimizing the starting current, stator iron loss, stator copper loss, and input power. The multi-objective optimization design with high-performance property using the altered grey wolf optimization, the Taguchi method, and FEA in the second-phase program is used for maximizing the efficiency, output torque, and power factor. Finally, the proposed skill with higher performances is evaluated and verified via a two-phase program design and some performance tests.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)