Joint State of Charge (SOC) and State of Health (SOH) Estimation for Lithium-Ion Batteries Packs of Electric Vehicles Based on NSSR-LSTM Neural Network

Author:

Hu Panpan1,Tang W. F.1ORCID,Li C. H.1,Mak Shu-Lun12ORCID,Li C. Y.1ORCID,Lee C. C.1ORCID

Affiliation:

1. School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China

2. Vocational Training Council-Youth College (Kwai Chung), Hong Kong, China

Abstract

Lithium-ion batteries (LIBs) are widely used in electrical vehicles (EVs), but safety issues with LIBs still occur frequently. State of charge (SOC) and state of health (SOH) are two crucial parameters for describing the state of LIBs. However, due to inconsistencies that may occur among hundreds to thousands of battery cells connected in series and parallel in the battery pack, these parameters can be difficult to estimate accurately. To address this problem, this paper proposes a joint SOC and SOH estimation method based on the nonlinear state space reconstruction (NSSR) and long short-term memory (LSTM) neural network. An experiment testbed was set up to measure the SOC and SOH of battery packs under different criteria and configurations, and thousands of charging/discharging cycles were recorded. The joint estimation algorithms were validated using testbed data, and the errors for SOC and SOH estimation were found to be within 2.5% and 1.3%, respectively, which is smaller than the errors obtained using traditional Ah-Integral and LSTM-only algorithms.

Funder

Hong Kong SAR, RGC Faculty Development Scheme

RGC Research Matching Grant Scheme

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3