Abstract
In order to improve the convergence time and stabilization accuracy of the real-time state estimation of the power batteries for electric vehicles, a fuzzy unscented Kalman filtering algorithm (F-UKF) of a new type is proposed in this paper, with an improved second-order resistor-capacitor (RC) equivalent circuit model established and an online parameter identification used by Bayes. Ohmic resistance is treated as a battery state of health (SOH) characteristic parameter, F-UKF algorithms are used for the joint estimation of battery state of charge (SOC) and SOH. The experimental data obtained from the ITS5300-based battery test platform are adopted for the simulation verification under discharge conditions with constant-current pulses and urban dynamometer driving schedule (UDDS) conditions in the MATLAB environment. The experimental results show that the F-UKF algorithm is insensitive to the initial value of the SOC under discharge conditions with constant-current pulses, and the SOC and SOH estimation accuracy under UDDS conditions reaches 1.76% and 1.61%, respectively, with the corresponding convergence time of 120 and 140 s, which proves the superiority of the joint estimation algorithm.
Funder
National Natural Science Foundation of China
Hubei Science Fund for Distinguished Young Scholars
Hubei province technological innovation major project
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献