Research on SOC Estimation Method for Lithium-Ion Batteries Based on Neural Network

Author:

Zhang Chuanwei1,Xu Xusheng1,Li Yikun1,Huang Jing1,Li Chenxi1,Sun Weixin1

Affiliation:

1. School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

With the increasingly serious problem of environmental pollution, new energy vehicles have become a hot spot in today’s research. The lithium-ion battery has become the mainstream power battery of new energy vehicles as it has the advantages of long service life, high-rated voltage, low self-discharge rate, etc. The battery management system is the key part that ensures the efficient and safe operation of the vehicle as well as the long life of the power battery. The accurate estimation of the power battery state directly affects the whole vehicle’s performance. As a result, this paper established a lithium-ion battery charge state estimation model based on BP, PSO-BP and LSTM neural networks, which tried to combine the PSO algorithm with the LSTM algorithm. The particle swarm algorithm was utilized to obtain the optimal parameters of the model in the process of repetitive iteration so as to establish the PSO-LSTM prediction model. The superiority of the LSTM neural network model in SOC estimation was demonstrated by comparing the estimation accuracies of BP, PSO-BP and LSTM neural networks. The comparative analysis under constant flow conditions in the laboratory showed that the PSO-LSTM neural network predicts SOC more accurately than BP, PSO-BP and LSTM neural networks. The comparative analysis under DST and US06 operating conditions showed that the PSO-LSTM neural network has a greater prediction accuracy for SOC than the LSTM neural network.

Funder

National Natural Science Foundation of China

2021 Youth Innovation Team Construction Scientific Research Program of Shaanxi Provincial Education Department

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Key Technologies for Wind-Solar-Storage Coupled High-Efficiency and Stable Power Supply in Low-Temperature Environments;2024 IEEE 2nd International Conference on Power Science and Technology (ICPST);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3