Bionic Artificial Lateral Line Underwater Localization Based on the Neural Network Method

Author:

Pu YanyunORCID,Hang ZheyiORCID,Wang Gaoang,Hu HuanORCID

Abstract

The lateral line system is an essential mechanosensory organ for organisms such as fish; it perceives the fluid environment in the near-field through the neuromasts on the lateral line system, supporting behaviors (e.g., obstacle avoidance and predation in fish). Inspired by the near-field perception ability of fish, we propose an artificial lateral line system composed of pressure sensors that respond to a target’s relative position by measuring the pressure change of the target vibration near the lateral line. Based on the shortcomings of the idealized constrained modeling approach, a multilayer perceptron network was built in this paper to process the pressure signal and predict the coordinates on a two-dimensional plane. Previous studies primarily focused on the localization of a single dipole source and rarely considered the localization of multiple vibration sources. In this paper, we explore the localization of numerous dipole sources of the same and different frequency vibrations based on the prediction of the two-dimensional coordinates of double dipoles. The experimental results show that the mutual interference of two vibration sources causes an increase in the localization error. Compared with multiple sources of vibration at the same frequency, the positioning accuracies of various vibration sources at different frequencies are higher. In addition, we explored the effects of the number of sensors on the localization results.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Education Department

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference51 articles.

1. Research advances of biomimetic artificial lateral line detection technology for unmanned underwater swarm;Hu;J. Underw. Unmanned Syst.,2019

2. Marine resource economy and strategy under the background of marine ecological civilization construction

3. Trends in ROV Development

4. Analysis of error sources in underwater localization systems;Cario;Proceedings of the OCEANS 2019-Marseille,2019

5. A Survey on Underwater Localization, Localization Techniques and Its Algorithms;Ullah;Proceedings of the 3rd Annual International Conference on Electronics, Electrical Engineering and Information Science, EEEIS,2017

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3