Shape Classification Using a Single Seal-Whisker-Style Sensor Based on the Neural Network Method

Author:

Mao Yitian1,Lv Yingxue2,Wang Yaohong3,Yuan Dekui4,Liu Luyao1,Song Ziyu4,Ji Chunning4ORCID

Affiliation:

1. Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China

2. CCCC First Harbor Engineering Company Ltd. (Key Laboratory of Coastal Engineering Hydrodynamics, CCCC), Tianjin 300461, China

3. Center for Applied Mathematics and KL-AAGDM, Tianjin University, Tianjin 300072, China

4. State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300072, China

Abstract

Seals, sea lions, and other aquatic animals rely on their whiskers to identify and track underwater targets, offering valuable inspiration for the development of low-power, portable, and environmentally friendly sensors. Here, we design a single seal-whisker-like cylinder and conduct experiments to measure the forces acting on it with nine different upstream targets. Using sample sets constructed from these force signals, a convolutional neural network (CNN) is trained and tested. The results demonstrate that combining the seal-whisker-style sensor with a CNN enables the identification of objects in the water in most cases, although there may be some confusion for certain targets. Increasing the length of the signal samples can enhance the results but may not eliminate these confusions. Our study reveals that high frequencies (greater than 5 Hz) are irrelevant in our model. Lift signals present more distinct and distinguishable features than drag signals, serving as the primary basis for the model to differentiate between various targets. Fourier analysis indicates that the model’s efficacy in recognizing different targets relies heavily on the discrepancies in the spectral features of the lift signals.

Funder

Key Research and Development Program of the 14th Five-year Plan of China

CCCC Science and Technology Research and Development Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3