A Symmetrized Dot Pattern Extraction Method Based on Frobenius and Nuclear Hybrid Norm Penalized Robust Principal Component Analysis and Decomposition and Reconstruction

Author:

Wang Lijing1,Wei Shichun1,Xi Tao2,Li Hongjiang1

Affiliation:

1. School Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin 300384, China

2. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China

Abstract

Due to their symmetrized dot pattern, rolling bearings are more susceptible to noise than time–frequency characteristics. Therefore, this article proposes a symmetrized dot pattern extraction method based on the Frobenius and nuclear hybrid norm penalized robust principal component analysis (FNHN-RPCA) as well as decomposition and reconstruction. This method focuses on denoising the vibration signal before calculating the symmetric dot pattern. Firstly, the FNHN-RPCA is used to remove the non-correlation between variables to realize the separation of feature information and interference noise. After, the residual interference noise, irrelevant information, and fault features in the separated signal are clearly located in different frequency bands. Then, the ensemble empirical mode decomposition is applied to decompose this information into different intrinsic mode function components, and the improved DPR/KLdiv criterion is used to select components containing fault features for reconstruction. In addition, the symmetrized dot pattern is used to visualize the reconstructed signal. Finally, method validation and comparative analysis are conducted on the CWRU datasets and experimental bench data, respectively. The results show that the improved criteria can accurately complete the screening task, and the proposed method can effectively reduce the impact of strong noise interference on SDPs.

Funder

Tianjin Natural Science Foundation

Tianjin Urban Construction University Graduate Education Reform

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3