A Meta-Learning Method for Electric Machine Bearing Fault Diagnosis Under Varying Working Conditions With Limited Data
Author:
Affiliation:
1. School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
2. Department of Energy Technology, Aalborg University, Aalborg, Denmark
Funder
Sichuan Science and Technology Program
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Information Systems,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/9424/10064202/09749912.pdf?arnumber=9749912
Reference32 articles.
1. Gaussian Process Kernel Transfer Enabled Method for Electric Machines Intelligent Faults Detection With Limited Samples
2. Reinforcement Learning and Its Applications in Modern Power and Energy Systems: A Review
3. DCNN-Based Multi-Signal Induction Motor Fault Diagnosis
4. A convolutional neural network based on a capsule network with strong generalization for bearing fault diagnosis
5. On Powers of Gaussian White Noise
Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Few-shot bearing fault diagnosis by semi-supervised meta-learning with graph convolutional neural network under variable working conditions;Measurement;2025-01
2. User generated content intelligent analysis for urban natural gas with transformer-based cyber-physical social systems;Applied Energy;2024-11
3. A novel dimensional variational prototypical network for industrial few-shot fault diagnosis with unseen faults;Computers in Industry;2024-11
4. A two-stage importance-aware subgraph convolutional network based on multi-source sensors for cross-domain fault diagnosis;Neural Networks;2024-11
5. Few-shot fault diagnosis of underwater thrusters based on semi-supervised prototypical network with SimAM attention and auxiliary classifier;Ocean Engineering;2024-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3