Abstract
Abstract
It confronts great difficulty to apply the traditional rolling bearing fault diagnosis methods to adaptively extract features conducive to fault diagnosis under complex operating conditions, and obtaining numerous fault data under real operating conditions is difficult and costly. To address this problem, a fault diagnosis method based on two-dimensional time-frequency images and data augmentation is proposed. To begin with, the original one-dimensional time series signal is converted into two-dimensional time-frequency images by continuous wavelet transform to obtain the input data suitable for two-dimensional convolutional neural network (CNN). Secondly, data augmentation technique is employed to expand labeled fault data. Finally, the generated and original fault data are served as training samples to train the fault diagnosis model based on CNNs. Experimental studies are conducted on standard and real-world datasets to validate the proposed method and demonstrate its superiority over the traditional methods in detecting bearing faults.
Funder
Open Fund of Hubei Internet Open Fund of Finance Information Engineering Technology Research Center
the Open Fund of HubeiKey Laboratory of Hydroelectric Machinery Design and Maintenance
Subject
Applied Mathematics,Instrumentation,Engineering (miscellaneous)
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献