A Novel Transformer Network Based on Cross–Spatial Learning and Deformable Attention for Composite Fault Diagnosis of Agricultural Machinery Bearings

Author:

Li Xuemei1ORCID,Li Min2ORCID,Liu Bin2ORCID,Lv Shangsong2,Liu Chengjie2

Affiliation:

1. College of Mechanical and Control Engineering, Baicheng Normal University, Baicheng 137000, China

2. College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China

Abstract

Diagnosing agricultural machinery faults is critical to agricultural automation, and identifying vibration signals from faulty bearings is important for agricultural machinery fault diagnosis and predictive maintenance. In recent years, data–driven methods based on deep learning have received much attention. Considering the roughness of the attention receptive fields in Vision Transformer and Swin Transformer, this paper proposes a Shift–Deformable Transformer (S–DT) network model with multi–attention fusion to achieve accurate diagnosis of composite faults. In this method, the vibration signal is first transformed into a time–frequency graph representation through continuous wavelet transform (CWT); secondly, dilated convolutional residual blocks and efficient attention for cross–spatial learning are used for low–level local feature enhancement. Then, the shift window and deformable attention are fused into S–D Attention, which has a more focused receptive field to learn global features accurately. Finally, the diagnosis result is obtained through the classifier. Experiments were conducted on self–collected datasets and public datasets. The results show that the proposed S–DT network performs excellently in all cases. With a slight decrease in the number of parameters, the validation accuracy improves by more than 2%, and the training network has a fast convergence period. This provides an effective solution for monitoring the efficient and stable operation of agricultural automation machinery and equipment.

Funder

Natural Science Foundation of Jilin Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3