Fast Electrochemical Measurement of Laccase Activity for Monitoring Grapes’ Infection with Botrytis cinerea

Author:

Lulea Andreea Catalina,Ruginescu Robert,Banciu Roberta Maria,Pantazi Catalina,Brinduse Elena,Ion Marian,Quintela SilviaORCID,Elejalde EdurneORCID,Fernández-de-Castro Laura,Villarán Maria Carmen,Ruiz-de-Vergara Zuria,Ruíz Cristobal,Epure Petru,Purcarea Cristina,Vasilescu AlinaORCID

Abstract

Grapes’ infection with the fungi Botrytis cinerea is one of the major causes of economic loss in the winemaking sector worldwide. The laccase activity of grapes is considered an appropriate indicator of this type of fungal infection, and enzymatic activity higher than 3 U/mL indicates a high risk of irreversibly damaged grape must due to enzymatic browning. This work describes a fast test for the measurement of laccase activity based on a dual optical and electrochemical detection method. A paper sensor impregnated with the enzymatic substrate dye 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) provides a semi-quantitative optical measurement. While the paper sensor can be used independently, when combined with a screen-printed electrode and amperometry measurements, it enables the quantitative detection of laccase activities down to 0.4 U/mL in only 5 min. The method was applied for monitoring the artificial infection of white, rosé, and red grapes with different strains of Botrytis cinerea. The results were confirmed by parallel analysis using the spectrophotometric method of laccase activity determination based on syringaldazine. The influence of the fungal strain and type of grape on laccase activity levels is reported. The demonstrated robustness, simplicity, and versatility of the developed method make it ideal for application on-site in the vineyard or at grape processing points.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Romanian Academy

Basque Government

European Union

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3