Optimization Method of Airborne LiDAR Individual Tree Segmentation Based on Gaussian Mixture Model

Author:

Zhang ZhenyuORCID,Wang JianORCID,Li ZhiyuanORCID,Zhao YoulongORCID,Wang Ruisheng,Habib AymanORCID

Abstract

Forests are the main part of the terrestrial ecosystem. Airborne LiDAR is fast, comprehensive, penetrating, and contactless and can depict 3D canopy information with a high efficiency and accuracy. Therefore, it plays an important role in forest ecological protection, tree species recognition, carbon sink calculation, etc. Accurate recognition of individual trees in forests is a key step to various application. In real practice, however, the accuracy of individual tree segmentation (ITS) is often compromised by under-segmentation due to the diverse species, obstruction and understory trees typical of a high-density multistoried mixed forest area. Therefore, this paper proposes an ITS optimization method based on Gaussian mixture model for airborne LiDAR data. First, the mean shift (MS) algorithm is used for the initial ITS of the pre-processed airborne LiDAR data. Next, under-segmented samples are extracted by integrated learning, normally segmented samples are classified by morphological approximation, and the approximate distribution uncertainty of the normal samples is described with a covariance matrix. Finally, the class composition among the under-segmented samples is determined, and the under-segmented samples are re-segmented using Gaussian mixture model (GMM) clustering, in light of the optimal covariance matrix of the corresponding categories. Experiments with two datasets, Trento and Qingdao, resulted in ITS recall of 94% and 96%, accuracy of 82% and 91%, and F-scores of 0.87 and 0.93. Compared with the MS algorithm, our method is more accurate and less likely to under-segment individual trees in many cases. It can provide data support for the management and conservation of high-density multistoried mixed forest areas.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3