Abstract
Forests are the largest terrestrial ecosystem carbon pool and provide the most important nature-based climate mitigation pathway. Compared with belowground biomass (BGB) and soil carbon, aboveground biomass (AGB) is more sensitive to human disturbance and climate change. Therefore, accurate forest AGB mapping will help us better assess the mitigation potential of forests against climate change. Here, we developed six models to estimate national forest AGB using six machine learning algorithms based on 52,415 spaceborne Light Detection and Ranging (LiDAR) footprints and 22 environmental features for China in 2007. The results showed that the ensemble model generated by the stacking algorithm performed best with a determination coefficient (R2) of 0.76 and a root mean square error (RMSE) of 22.40 Mg/ha. The verifications at pixel level (R2 = 0.78, RMSE = 16.08 Mg/ha) and provincial level (R2 = 0.53, RMSE = 14.05 Mg/ha) indicated the accuracy of the estimated forest AGB map is satisfactory. The forest AGB density of China was estimated to be 53.16 ± 1.63 Mg/ha, with a total of 11.00 ± 0.34 Pg. Net primary productivity (NPP), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), average annual rainfall, and annual temperature anomaly are the five most important environmental factors for forest AGB estimation. The forest AGB map we produced is expected to reduce the uncertainty of forest carbon source and sink estimations.
Funder
Open Innovation Project of the Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, MNR
Subject
General Earth and Planetary Sciences
Reference70 articles.
1. Global Forest Resources Assessment 2020, 2020.
2. Importance of biomass in the global carbon cycle;Houghton;J. Geophys. Res. Biogeosciences,2009
3. Negative emissions from stopping deforestation and forest degradation, globally;Houghton;Glob. Chang. Biol.,2018
4. Global Carbon Budget 2020;Friedlingstein;Earth Syst. Sci. Data,2020
5. Natural climate solutions;Griscom;Proc. Natl. Acad. Sci. USA,2017
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献