Traffic Flow Prediction at Varied Time Scales via Ensemble Empirical Mode Decomposition and Artificial Neural Network

Author:

Chen XinqiangORCID,Lu Jinquan,Zhao Jiansen,Qu Zhijian,Yang Yongsheng,Xian Jiangfeng

Abstract

Accurate traffic flow data is crucial for traffic control and management in an intelligent transportation system (ITS), and thus traffic flow prediction research attracts significant attention in the transportation community. Previous studies have suggested that raw traffic flow data may be contaminated by noises caused by unexpected reasons (e.g., loop detector damage, roadway maintenance, etc.), which may degrade traffic flow prediction accuracy. To address this issue, we proposed an ensemble framework via ensemble empirical mode decomposition (EEMD) and artificial neural network (ANN) to predict traffic flow under different time intervals ahead. More specifically, the proposed framework firstly employed the EEMD model to suppress the noises in the raw traffic data, which were then processed to predict traffic flow at time steps under different time scales (i.e., 1, 2, and 10 min). We verified our model performance on three loop detectors’ data, which were supported by the Department of Transportation, Minnesota. The research findings can help traffic participants collect more accurate traffic flow data and thus benefits transportation practitioners by helping them to make more reasonable traffic decisions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3