Abstract
Accurate traffic flow data is crucial for traffic control and management in an intelligent transportation system (ITS), and thus traffic flow prediction research attracts significant attention in the transportation community. Previous studies have suggested that raw traffic flow data may be contaminated by noises caused by unexpected reasons (e.g., loop detector damage, roadway maintenance, etc.), which may degrade traffic flow prediction accuracy. To address this issue, we proposed an ensemble framework via ensemble empirical mode decomposition (EEMD) and artificial neural network (ANN) to predict traffic flow under different time intervals ahead. More specifically, the proposed framework firstly employed the EEMD model to suppress the noises in the raw traffic data, which were then processed to predict traffic flow at time steps under different time scales (i.e., 1, 2, and 10 min). We verified our model performance on three loop detectors’ data, which were supported by the Department of Transportation, Minnesota. The research findings can help traffic participants collect more accurate traffic flow data and thus benefits transportation practitioners by helping them to make more reasonable traffic decisions.
Funder
National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献