Short-Term Traffic Flow Forecasting Method Based on Secondary Decomposition and Conventional Neural Network–Transformer

Author:

Bing Qichun1,Zhao Panpan1,Ren Canzheng1,Wang Xueqian1,Zhao Yiming1

Affiliation:

1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China

Abstract

Because of the random volatility of traffic data, short-term traffic flow forecasting has always been a problem that needs to be further researched. We developed a short-term traffic flow forecasting approach by applying a secondary decomposition strategy and CNN–Transformer model. Firstly, traffic flow data are decomposed by using a Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) algorithm, and a series of intrinsic mode functions (IMFs) are obtained. Secondly, the IMF1 obtained from the CEEMDAN is further decomposed into some sub-series by using Variational Mode Decomposition (VMD) algorithm. Thirdly, the CNN–Transformer model is established for each IMF separately. The CNN model is employed to extract local spatial features, and then the Transformer model utilizes these features for global modeling and long-term relationship modeling. Finally, we obtain the final results by superimposing the forecasting results of each IMF component. The measured traffic flow dataset of urban expressways was used for experimental verification. The experimental results reveal the following: (1) The forecasting performance achieves remarkable improvement when considering secondary decomposition. Compared with the VMD-CNN–Transformer, the CEEMDAN-VMD-CNN–Transformer method declined by 25.84%, 23.15% and 22.38% in three-step-ahead forecasting in terms of MAPE. (2) It has been proven that our proposed CNN–Transformer model could achieve more outstanding forecasting performance. Compared with the CEEMDAN-VMD-CNN, the CEEMDAN-VMD-CNN–Transformer method declined by 13.58%, 11.88% and 11.10% in three-step-ahead forecasting in terms of MAPE.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Shandong Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interpretable predictive modeling of non-stationary long time series;Computers & Industrial Engineering;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3