Aquila Optimizer-Based Hybrid Predictive Model for Traffic Congestion in an IoT-Enabled Smart City

Author:

Chahal Ayushi1ORCID,Gulia Preeti1ORCID,Gill Nasib Singh1ORCID,Sultana Nishat2ORCID

Affiliation:

1. Department of Computer Science & Applications, Maharshi Dayanand University, Rohtak, Haryana, India

2. Department of Computer Science & Engineering, Daffodil International University, Ashulia, Dhaka, Bangladesh

Abstract

Effective traffic congestion prediction is need of the hour in a modern smart city to save time and improve the quality of life for citizens. In this study, AB_AO (ARIMA Bi-LSTM using Aquila optimizer), a hybrid predictive model, is proposed using the most effective time-series data prediction statistical model ARIMA (Autoregressive Integrated Moving Average) and sequential predictive Deep Learning (DL) technique LSTM (Long Short-Term Memory) which helps in traffic congestion prediction with a minimum error rate. Also, the Aquila optimizer (AO) is used to elevate the adequacy of the AB_AO model. Three road traffic datasets of different cities from the “CityPulse EU FP7 project” are used to implement the proposed hybrid model. In a time-series dataset, two components need to be handled with care, i.e., linear and nonlinear. In this study, the ARIMA model has been used to manage linear components and Bi-LSTM is used to handle nonlinear components of the time-series dataset. The Aquila Optimizer (AO) is used for hyperparametric tuning to enhance the performance of Bi-LSTM. Error measurement parameters like the Mean Absolute Error (MAE), Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE) are used to validate the results. A detailed mathematical and empirical analysis is given to justify the performance of the AB_AO model using an ablation study and comparative analysis. The AB_AO model acquires more stable and precise results with MSE as 18.78, MAE as 3.18, and MAPE as 0.21 than other models. It may further help to predict the vehicle count on the road, which may be of great help in reducing wastage of time in traffic congestion.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3